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LETTER TO THE EDITOR 

The noise spectrum in the model of self-organised criticality* 

Jinos Kertkszt and Liszl6 B Kiss$ 
Institute for Theoretical Physics, University of Cologne, Zulpicher Strasse 77, D-5000 Koln 
41, Federal Republic of Germany 

Received 15 January 1990 

Abstract. The explanation of I/f noise with the help of models of self-organised criticality 
makes use of combining scaling and the distributed time-constant picture. Limits of 
applicability of this type of arguments are presented. The numerical study of the two- 
dimensional model of Bak, Tang and Wiesenfeld shows that although non-trivial scaling 
is present, the power spectrum of the total process has a - l / f 2  behaviour. 

Bak, Tang and Wiesenfeld (BTW) (1987,1988) introduced a very interesting model to 
explain the fractality emerging spontaneously in nature as well as the so-called l/f 
flicker noise. The basic concept is that the considered non-equilibrium systems build 
up 'self-organised criticality' ( S O C ) ,  i.e. a stationary state without finite characteristic 
length and time scales (besides the microscopic units) which leads to power law 
behaviour in the characteristic quantities like the cluster size distribution, the distribu- 
tion of the lifetimes of single events, etc. In order to visualise the ideas, BTW used the 
terminology of sandpiles (single events) and avalanches (total system) but they 
emphasised that the applicability of the concepts is much more general. 

BTW stressed that SOC should be distinguished from usual critical phenomena where 
the lack of scales appears only at a special value of the parameters which should be 
forced on to the system to bring it to criticality. Although there are parameters also 
in the BTW model which should be kept at their critical value (e.g. the limit small 
energy supply is considered), it seems that the requirements can be fulfilled to consider- 
able extent leading to fractal behaviour over many orders of magnitudes. 

One possible important application of the concept of SOC is in the area of l/f 
noise. In spite of the universal occurrence of 1/ f (or l/f") noise and the large effort 
investigators have made, a general theory of this phenomenon does not exist (Kiss 
1988). It has been an appealing idea for some time to trace back the power law 
behaviour of the noise spectrum to the scale invariance of fractal or critical systems. 
BTW suggested that the structures emerging from SOC and having scaling properties 
both in space and time lead to a l/f-type noise spectrum. The arguments were based 
on a combination of scaling ideas with the established formula describing the noise 
of Lorentzian fluctuators with distributed time constants. 

*The  numerical results of this paper were briefly reported at the 10th Int. Conf. on Noise in Physical 
Systems, Budapest, August 21-5, 1989. 
t On leave from Institute for Technical Physics, H-1325 Budapest, Hungary. 
$ On leave from Institute for Experimental Physics, JATE University, D6mttr 9, Szeged, H-6720 Hungary. 
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Recently some experiments were carried out where the noise spectrum was measured 
in systems which could be related to SOC. Jaeger er al (1989) found a l/f' spectrum 
by investigating the flow of sand. A similar spectrum was found by Janossi and Horvhth 
(1989), who measured the coverage fluctuations of water droplets on a window pane. 

The purpose of this letter is to study the following questions. (i)  What are the 
theoretical limits of the application of scaling arguments to obtain l/f"-type noise 
with a non-trivial a ?  (i i)  What is the numerically determined noise spectrum in the 
BTW model? 

Let us suppose that in a non-equilibrium system independent elementary events 
contribute to the energy dissipation. We shall use here the language of BTW, i.e. the 
elementary events are identified with the avalanches, but the considerations are general. 
An elementary event is characterised by the time dependence of its amplitude Ty( t )  
where s is the total impact (number of moves during an avalanche). Introducing the 
Fourier transform f s ( w )  =jexp(iwt)fy( t )  d?, the mean energy density spectrum of 
avalanches with a given size s is defined as 

( E s ( w ) )  = (If&J)12) ( 1 )  

where ( . . . ) means statistical average. 
Under quite general conditions the energy density spectrumt of non-oscillating 

elementary events of a given size can be considered as a (quasi-)Lorentzian. (Neverthe- 
less, this is an assumption which has to be checked in specific situations.) Using the 
normalisation condition for f ( w  = 0) = s one gets 

where T, is the mean time constant of the avalanches of size s. Since the avalanches 
do not interact, the total power density spectrum S ( w )  is the weighted sum of the 
individual contributions: 

where n, is the density distribution of avalanches of size s. 
In a scaling framework T, and n, should have power law behaviour: 

T, - sx, 

n, - s - ~ .  

Substituting these relations into (3) we get: 

d U. 

Here s, (sz) and T,,  ( Ts2)  are the sizes and lifetimes at the lower (upper) cut-off. Since 
we are interested in the low-frequency behaviour it is only the upper cut-off (long-time 
behaviour) which has to be considered. Clearly, for 

2 x + r > 3  ( 6 )  

t The name energy density spectrum is somewhat misleading and has historical origins (voltage fluctuations). 
In the case of soc the amplitude of the elementary event (avalanche) is proportional to the dissipated 
energy; therefore the noise spectrum goes with the square of this quantity. 
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the integral is convergent as T,? + 00 and 

follows. In particular, for x + T = 3 we get the exact l/f behaviour. 

dependence since the weight of the T, >> l /w modes becomes important: 
On the other hand, for 2x + T S 3 the upper cut-off contributes to the frequency 

In this case the low-frequency behaviour will always be l /w2  (with logarithmic 
correction for 2x + T = 3 )  and the amplitude will increase with the upper cut-off T,?.  
A similar result using special assumptions was obtained by Jensen et al (1989). 

The essential points going into these considerations have been: ( a )  the contributions 
to the total energy dissipation stem from independent elementary events, ( b )  the 
asymptotic shape of the mean energy spectrum of a single event is ( E r ) -  1 / ( w T 5 ) ?  (cf 
equation (2)) ,  ( c )  T, and  n, obey scaling forms according to (4). Changing assumption 
( b )  to 

we would get 

2 x 6 + ~ > 3  (10) 

instead of criterion (6) while, in case (10) is violated, we get 

It is sometimes useful to express the above relations in terms of the lifetime 
distribution n T  which can also be assumed to obey a power law: 

n T  - T--'. (12a) 

The relation n T  d T -  n,(dT/ds) d s  - n, d s  and (4) lead to the following scaling law: 

(12b) X ( 1 - J' ) = 1 - T. 

With this result the scaling limit of the power spectrum takes the form 

So far our considerations are general and  not system or model dependent. Now we 
turn to the concrete model of BTW. 

We repeated the computer modelling of the original two-dimensional self-organised 
critical system proposed by BTW; however, we determined all the density functions 
considered in the previous sections, including the energy density spectra and  the power 
density spectrum of the total avalanche current. A square array (x, y )  was taken with 
0 < x, y < N + 1 ( N = 10,20,40,80). 
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The model is defined in the following way (Bak et a1 1988). As a consequence of 
an excitation at x, y the neighbourhood is changed: 

z ( x ,  Y 1 + 4 x 9  Y )  + 2 

z ( x -  1, y ) +  z ( x -  1, y ) -  1 

z ( x , y -  1 ) +  z ( x ,  y -  1) - 1. 

( 1 4 a )  

( 1 4 6 )  

(14c )  

If the local variable z ( x , y )  exceeds a given critical parameter z, a ‘slide’ takes 
place to the neighbouring points: 

Z(X,Y)+Z(X,Y) -4  ( 1 5 0 )  

z ( x ,  y* 1 ) +  z ( x ,  y *  1 ) +  1 ( 1 5 b )  

z (  x * 1 ,  y )  + z ( x  f 1 ,  y )  + 1 .  ( 15c )  

We carried out simulations in the weak-excitation limit, i.e. we started the avalanches 
by a single excitation and then observed the possible spreading sequence by slidings 
determined by this event. Before the measurement of the statistical properties of the 
avalanches, the system was run (in the way described above) many times, until a 
stationary state (the SOC state) was reached. 

Here we present the numerical results found on the system of size N = 80. In the 
critical range, the weighted energy density spectra n,E , (w)  of the avalanches turned 
out to scale with the size s (see figure 1): 

n , E , ( w ) -  s Z g ( w s X )  (16 )  

I I I I I I I 1  

0 2 4 6 8 

log ( U  S X )  

Figure 1. The scaling of elementary (avalanche) spectra. The exponent z in the text is 
equal to 2 - T = 0.9. Symbols (avalanche sizes): cross (4); square (8); circle (16); triangle 
(32); diamond (64); dot (128). 
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with z = 0.9 and x = 0.68, with g being a scaling function which can be well approxi- 
mated by a Lorentzian. That means it is nearly constant at low frequencies and nearly 
l / w 2  above a certain corner frequency 1/ T, (see (2)): 

Comparing (16) and (17) we get for the size distribution in the critical range that 

(18) 

that is, T = 1.1 (see 4( b)) and the dependence of the mean time constants on the size 
of the avalanches should be: 

- 1 . 1  n, - s 

T, 5 so.6* (19) 

that is, x =0.68 (see 4 ( a ) ) .  Both these relations (18) and (19) are confirmed by our 
direct measurements; see figures 2 and 3. 

1 10 1 0 2  

5 

Figure 2. Avalanche size distribution. The full line follows a power law with exponent 
- T = - l . l .  

Using (126) we can predict that the distribution of time constants has the following 
form: 

nT - T-'."' (20) 
that is, y = 1 .1  15. As can be seen on figure 4, a T-'."' fit of the measured nT is a fairly 
good approximation?. 

Taking the above values we see that condition ( 6 )  is violated: 

2x + T = 2.46 < 3. (21) 

+ The exponents characterising the distributions ( T  and y )  are in agreement with BTW within numerical 
accuracy. (Note that our T is related to the T~~~ as T + I  = T ~ ~ , . , . )  Recently, by careful large-scale 
computations, Manna (1989) found more accurate and somewhat different exponents. 
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I I I I I ' ' ' I  I I 1 1 I I I I I  I 

1 10 1 0 2  

5 

Figure 3. Avalanche lifetime against size. The full line follows a power law with exponent 
x = 0.68. 

, 0 4 1  \ 
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1 10  102 
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Figure 4. Distribution of avalanche lifetimes. The full line represents 
exponent -y = -1.115. 

a power law with 
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0 2 4 6 8 

‘og, w 
Figure 5. The total power density spectrum of the system of avalanches. I t  is a Lorentzian- 
like spectrum, dominated by the longest avalanches. The full line represents a 1 / w 2  
spectrum. 

Consequently, one can predict a l/f’-like power density spectrum of the total process. 
In figure 5, the total power spectrum can be seen which is indeed l/f’-like in the 
critical frequency range (that is, for frequencies higher than the reciprocal cut-off time 
given by the system size 80). This spectrum is dominated by the spectra of the avalanches 
with the longest duration. 

Our  results can be summarised as follows. We have shown that the scaling exponents 
determine the exponent of the noise spectrum only if the exponent inequalities ( 6 )  or 
(10) are valid. The obtained relation ( 7 )  is different from that suggested earlier by 
Tang and Bak (1988) who did not use the proper weight in the noise spectrum. Jensen 
et a1 (1989) realised this discrepancy but made some unjustified assumptions. Our  
simulations show that for the two-dimensional model by Bak er a1 the single avalanche 
noise spectrum is quasi-Lorentzian and the actual values of the exponents violate (6). 
Therefore we obtained l / w 2  dependence for the total power spectrum with a size- 
dependent amplitude in accordance with the fact that the contribution stems from the 
cut-off and  is also in agreement with the recent independent simulation by Jensen er 
al. Although the mechanism suggested for the l/f noise by Bak er a1 is very appealing, 
it seems that it is not as general as originally believed. 

We wish to thank Dietrich Wolf for valuable discussions. The support by the Humboldt 
Foundation (JK) and  by SFB 341 (LBK) as well as by OTKA is gratefully acknowledged. 
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